
3-1

Reinforcement Learning

Lecture 3

Lecturer: Haim Permuter Scribe: Bashar Huleihel

In the course of this lecture, we will first introduce the Bellman optimality operator,T ,

and then, in continuation of the previous lecture, we will talk about value iteration in

finite MDPs for which the environment is fully observed and known to the agent. We

will also discuss the case where the environment is unknown to the agent and talk about

Monte Carlo methods.

In the last lecture, we proved some properties on the operator Tπ. We will start this

lecture by showing the same properties on the Bellman optimality operator,T .

First let us define the state-value vector by

v =

v(s1)

v(s2)
...

v(s|S|)

,

and the operatorT by

T (v)(s) = max
a

E [Rt+1 + γV (St+1)|St = s, At = a]

= max
a

[

r(s, a) + γ
∑

s′

p(s′|s, a)v(s′)

]

, ∀s ∈ S. (1)

Theorem 1 (Properties of T) The operatorT satisfies the following properties:∀v,v′ ∈

R
|S|, s ∈ S,

1. monotonicity v(s) ≤ v′(s)⇒ T (v)(s) ≤ T (v′)(s)

2. additivity ∀d ∈ R : ṽ(s) = v(s) + d⇒ T (ṽ)(s) = Tπ(v)(s) + γd

3. γ-contraction ∀v,v′ ∈ R
|S| ‖T (v)− T (v′)‖∞≤ γ‖v − v

′‖∞

3-2

Proof Let us prove the properties:

monotonicity: By using directly the definition of operatorT ,

T (v)(s) = max
a

[

r(s, a) + γ
∑

s′

p(s′|s, a)v(s′)

]

(a)

≤ max
a

[

r(s, a) + γ
∑

s′

p(s′|s, a)v′(s′)

]

= T (v′)(s),

where(a) follows by the assumption thatv(s) ≤ v′(s). Hence,T (v′)(s) ≥ T (v)(s).

additivity: Let us computeT (ṽ)(s) directly.

T (ṽ)(s) = max
a

[

r(s, a) + γ
∑

s′∈S

p(s′|s, a)(v(s′) + d)

]

= max
a

[

r(s, a) + γ
∑

s′∈S

p(s′|s, a)(v(s′))

]

+max
a

γ
∑

s′∈S

p(s′|s, a)d

(a)
= T (v)(s) + γd,

where (a) follows becausemaxa
∑

s′∈S p(s
′|s, a) = 1, ∀a ∈ A.

γ-contraction: Let,

a∗v = argmax
a

r(s, a) + γ
∑

s′

p(s′|s, a)v(s′),

a∗v′ = argmax
a

r(s, a) + γ
∑

s′

p(s′|s, a)v′(s′).

then,

|T (v)(s)− T (v′)(s)| =

∣

∣

∣

∣

∣

max
a

[

r(s, a) + γ
∑

s′

p(s′|s, a)v(s′)

]

−max
a

[

r(s, a) + γ
∑

s′

p(s′|s, a)v′(s′)

]∣

∣

∣

∣

∣

=

[

r(s, a∗v) + γ
∑

s′

p(s′|s, a∗v)v(s
′)

]

−

[

r(s, a∗v′) + γ
∑

s′

p(s′|s, a∗v′)v
′(s′)

]

(2)

(a)

≤ γ
∑

s′

p(s′|s, a∗v)(v(s
′)− v′(s′))

≤ γ
∑

s′

p(s′|s, a∗v)‖v − v′‖∞

3-3

= γ‖v − v′‖∞,

where(a) follows becausea∗v is not optimal for the right term in2. Note that as this is

true for all s ∈ S, it is therefore also true formaxs∈S |T (v)(s)− T (v)(s)|, which proves

the property.

I. VALUE ITERATION

In the last lecture, we discussed on policy iteration, whichone of his drawbacks is

that each of its iterations involves policy evaluation thatmay entail a protracted, iterative

computation. If policy evaluation is done iteratively, then convergence exactly tovπ occurs

only in the limit. The policy evaluation step can be truncated in several ways without

losing the convergence guarantees of policy iteration. Onespecial case of truncation is

when policy evaluation is stopped after just one backup of each state. This algorithm

is calledvalue iteration, and it can be written as a backup operation that combines the

policy improvement and truncated policy evaluation steps:

vk+1(s) = max
a

E [Rt+1 + γvk(St+1)|St = s, At = a]

= max
a

∑

s′,r

p(s′, r|s, a) [r + γvk(s
′)] , (3)

for all s ∈ S. For arbitraryv0, the sequencevk can be shown to converge tov∗ under

the same conditions that guarantee the existence ofv∗.

Another way of understanding value iteration is by citing the Bellman optimality equation,

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a

∑

s′,r

p(s′, r|s, a)[r + γv∗(s
′)]. (4)

Value iteration is obtained by turning this equation into anupdate rule. Also, note that

the value iteration backup is identical to the policy evaluation backup, except that the

former requires that the maximum be taken over all actions.

Further note that value iteration requires an infinite number of iterations to converge

exactly tov∗. In practice, in each of its sweeps, value iteration combines one sweep of

policy evaluation and one sweep of policy improvement, and we stop once the value

3-4

function changes by only a small amount in a sweep.

An algorithm for value iteration with this kind of termination condition is depicted in

Algorithm 1.

Algorithm 1 Value iteration
input: Initialize arbitrarily an arrayV

output: deterministic policy,π ≈ π∗, such that

π(s) = argmax
a

∑

s′,r

p(s′, r|s, a)[r + γV (s′)].

repeat

∆ = 0

For each s ∈ S:

v = V (s)

V (s) = maxa
∑

s′,r p(s
′, r|s, a)[r + γV (s′)]

∆ = max(∆, |v − V (s)|)

until ∆ > ǫ (whereǫ is a small positive number)

Asynchronous Dynamic Programming

A major drawback of the DP methods that we have discussed so far is that they require

sweeps over the entire state set of the MDP. For very large state sets, therefore, even a

single sweep may take long time. Indeed, even if we could perform the value iteration

backup on a million states per second, it would take over a thousand years to complete

a single sweep.AsynchronousDP algorithms are iterative DP algorithms that are not

organized in terms of systematic sweeps of the state set. These algorithms back up the

values of states in some order, using whatever values of other states happen to be available.

The values of some states may be backed up several times before the values of others

are backed up once. To converge, the algorithm must continueto back up the values of

all the states. That is, it cannot ignore any state after somepoint in the computation.

3-5

Generalized Policy Iteration

The termgeneralized policy iteration(GPI) refers to the general idea of letting policy

evaluation and policy improvement processes interact. Almost all reinforcement learning

methods are well described as GPI, since all have policies and value functions such that

the policy is always being improved with respect to the valuefunction and the value

function is always being driven toward the value function for the policy. If both the

evaluation process and the improvement process no longer generate changes, then the

Bellman optimality equation is satisfied, and therefore, thevalue function and policy

must be optimal. In practice, for the long run, the evaluation and improvement processes

in GPI interact to find the optimal value function and an optimal policy.

II. M ONTE CARLO

Here we consider our first learning methods for estimating value functions and

discovering optimal policies. Unlike above, we do not assume complete knowledge

of the environment. That is, these methods require only sample sequences of states,

actions, and rewards from actual or simulated interaction with an environment. Monte

Carlo methods are used to solve the reinforcement learning problem based on averaging

sample returns. We define them only for episodic tasks, that is, we assume experience is

divided into episodes and that episodes will eventually terminate (no matter what actions

are selected). Only on the completion of an episode are valueestimates and policies

changed. Monte Carlo methods sample and averagereturns for each state - action pair

and learn value functions from sample returns with the MDP.

Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for

a given policy. Recall that the value of a state is the expectedreturn from that state,

and one way to estimate it from experience is simply to average the returns observed

after visits to that state. As more returns are observed, theaverage should converge to

the expected value. In particular, suppose we wish to estimate vπ(s), the value of a state

s under policyπ, given a set of episodes obtained by followingπ. Each occurrence of

3-6

states in an episode is called avisit to s. Let us call the first times is visited in an

episode thefirst visit to s. Thefirst visit MC method estimatesvπ(s) as the average of the

returns following first visits tos, whereas theevery-visitMC method averages the returns

following all visits to s. The algorithm for the First-visit MC is depicted in Algorithm

2.

Algorithm 2 First-visit MC prediction, for estimatingV ≈ vπ
Initialize:

π ← policy to be evaluated

V ← an arbitrary state-value function

Returns(s)← an empty list, for alls ∈ S

repeat

Generate an episode usingπ

For each states ∈ S appearing in the episode:

G← return following the first occurrence ofs

Returns(s)← Returns(s)+ G

V (s)← average(Returns(s))

until forever

Both first-visit MC and every-visit MC converge tovπ(s) as the number of visits to

s goes to infinity. Unlike the case in DP, in Monte Carlo methods the estimate for one

state does not build upon the estimate of any other state.

Monte Carlo Estimation of Action Values

When the model is not available, then it is particularly useful to estimate the state-action

pair values rather thanstate values. With a model, state values alone are sufficient to

determine a policy. However, without a model, state values alone are not sufficient,

and one must explicitly estimate the value of each action forthe values to be useful

in suggesting a policy. Thus, one of our primary goals for Monte Carlo methods is to

3-7

estimateq∗. We want to estimateqπ(s, a), the expected return when starting in states,

taking actiona, and thereafter, following policyπ. The first-visit MC method averages

the returns following the first time in each episode that the state was visited and the action

was selected. These methods converge quadratically, as before, to the true expected values

as the number of visits to each stateaction pair goes to infinity. The only drawback is that

many stateaction pairs may never be visited. Therefore, we need to estimate the values

of all the actions from each state, not just the state we currently favor. This is the general

problem ofmaintaining exploration. One way to do so is by specifying that the episodes

start in a stateaction pair, and that every pair has a nonzeroprobability of being selected

as the start. This guarantees that all stateaction pairs will be visited in the limit of an

infinite number of episodes. The most common alternative approach is to consider only

policies that are stochastic with a nonzero probability of selecting all actions in each state.

Monte Carlo Control

Here we will consider how Monte Carlo estimation can be used toapproximate optimal

policies. First let us consider a Monte Carlo version of classical policy iteration which

is depicted by the following diagram:

π0
E
−→ qπ0

I
−→ π1

E
−→ qπ1

I
−→ . . .

I
−→ π∗

E
−→ qπ∗

We start with an arbitrary policyπ0, use policy evaluation (
E
−→) to evaluatevπ0

and then

use policy improvement (
I
−→) to findπ1. This process continues repeatedly untilv(·) stops

improving, i.e.,v(·) the Bellman optimality condition is satisfied. In this section, we will

assume that the episodes are generated with exploring starts, and we observe an infinite

number of episodes. Under these assumptions, the Monte Carlomethods will compute

eachqπk
exactly, for arbitraryπk, and the policy improvement theorem assures us that

eachπk+1 is uniformly better thanπk, or just as good asπk. This in turn assures us that

the overall process converges to the optimal policy and optimal value function. Here, after

each episode, the observed returns are used for policy evaluation, and then the policy

is improved at all the states visited in the episode. A complete algorithm called Monte

Carlo ES, for Monte Carlo with Exploring Starts, is depicted inAlgorithm 3.

3-8

Algorithm 3 Monte Carlo Exploring Starts, for estimatingπ ≈ π∗

Initialize:

Arbitrary Q(s, a)

πs ← arbitrary policy

Returns(s)← an empty list

repeat

ChooseS0 ∈ S andA0 ∈ A(S0) so that all pairs have probability> 0

Generate an episode starting fromS0, A0 following π

For each states, a appearing in the episode:

G← the return that follows the first occurrence ofs, a

Returns(s,a)← Returns(s,a)+ G

Q(s, a)← average(Returns(s,a))

For eachs in the episode:

π(s) ← argmaxaQ(s, a)

until forever

In this algorithm, all the returns for each stateaction pairare accumulated and

averaged. One can see that Monte Carlo ES cannot converge to any suboptimal policy,

as the value function would eventually converge to the valuefunction for that policy,

and that, in turn, would cause the policy to change.

Monte Carlo Control without Exploring Starts

Here we want to avoid the unlikely assumption of exploring starts. To do so, we will

introduce two approaches which ensure that the agent selectall the actions. The first

approach is calledon-policy methods, by which we attempt to evaluate or improve the

policy that is used to make decisions. The second approach called off-policy methods,

we use to evaluate or improve a policy different from that used to generate the data.

In this section, we will show how an on-policy Monte Carlo control method can be

3-9

designed. We assume that the policy is generallysoft, meaning thatπ(a|s) > 0 for all

s ∈ S and all a ∈ A(s). This method usesǫ-greedy policies, meaning that most of the

time they choose an action that has maximal estimated actionvalue, but with probability

ǫ, they select an action at random instead. That is, all nongreedy actions are given the

minimal probability of selection, ǫ
|A(s)|

, and the remaining probability,1 − ǫ + ǫ
|A(s)|

, is

given to the greedy action. For anyǫ-soft policy,π, any ǫ-greedy policy with respect to

qπ is guaranteed to be better than or equal toπ. The complete algorithm is depicted below.

Algorithm 4 On-policy first-visit MC control (forǫ-soft policies) estimatesπ ≈ π∗

Initialize (for all s ∈ S, a ∈ A):

Arbitrary Q(s, a)

πa|s ← an arbitraryǫ-soft policy

Returns(s,a)← empty list

repeat

Generate an episode using policyπ

For each states, a appearing in the episode:

G← the return that follows the first occurrence ofs, a

Returns(s,a)← Returns(s,a)+ G

Q(s, a)← average(Returns(s,a))

For eachs in the episode:

A∗ ← argmaxaQ(s, a)

For all a ∈ A:

π(a|s)←

1− ǫ+ ǫ
|A(s)|

, if a = A∗,

ǫ
|A(s)|

, if a 6= A∗.

until forever

3-10

REFERENCES

[1] R. S. Sutton and A. G. Barto.Reinforcement learning: An introduction, volume1. MIT press Cambridge,2017.

	Value Iteration
	Monte Carlo
	References

