3-1

Reinforcement Learning

Lecture 3

Lecturer: Haim Permuter Scribe: Bashar Huleihel

In the course of this lecture, we will first introduce the Bedimoptimality operator]’,
and then, in continuation of the previous lecture, we wilk tabout value iteration in
finite MDPs for which the environment is fully observed andbwm to the agent. We
will also discuss the case where the environment is unknovthe agent and talk about
Monte Carlo methods.

In the last lecture, we proved some properties on the opeflatoWe will start this
lecture by showing the same properties on the Bellman optynaperator,".

First let us define the state-value vector by

and the operatof’ by

T(v)(s) = méxXE [Rit1 + YV (Si1)|S: = s, Ay = q]

= max r(s,a) + 72p(s’|s, a)u(s')|, Vse€S. (1)

S

Theorem 1 (Properties of 1) The operatofi” satisfies the following propertiegy, v’ €
RISl se S,

1. monotonicity v(s) <V'(s) = T(v)(s) <T(V)(s)
2. additivity VdeR: o(s)=v(s)+d=T(0)(s) =Tx(v)(s) +~d
3. ~-contraction vv,v € RSl |IT(V) = T(V)|lso< Y|V — V']

3-2

Proof Let us prove the properties:
monotonicity By using directly the definition of operatdr,

T(v)(s) = max [r(s, a) + vzp(s']s, a)’u(s’)]

S/

< max [(@)+ 3wl a)v’(s'>]

=T(')(s),

where (a) follows by the assumption that(s) < v'(s). Hence,T'(v')(s) > T'(v)(s).
additivity: Let us computéf()() directly.

T(@)(s):max (s,a —1—7219 "Is,a)(v(s") + d)

a
s'eS

= max |r(s,a —1—7219 s, a)(v

s'eS

—i—maX’yZp ‘s, a)d

s'eS

2 T(v)(s) +7d,

where (a) follows becauseax,) s p(s'|s,a) = 1, Va € A.
~-contraction Let,

a —argmaxr(s a +’yZp "Is,a)v(s),

S/

al, = argmaxr(s,a) + 72p(5’|5, a)v'(s).

s/

then,

T(v)(s) = T(W)(s)| =

max [r(s, a) + 72p(8’|5, a)v(s’)] — max [r(s, a) + 72]9(5']5, a)v’(s’)] |

s’ s’

- [r<s,a:> +vzp<s’rs,a:>v<s’>] - [ms,a:,) +vzp<s'|s,a:/>v'<s’>]
@)
23S p(sls) (els) — ()

<Y p(']s,a)) v = ']l

3-3

= 7llv = '],

where (a) follows because: is not optimal for the right term i”2. Note that as this is
true for alls € S, it is therefore also true famhax,cs |7'(v)(s) — T(v)(s)|, which proves

the property.

. VALUE ITERATION

In the last lecture, we discussed on policy iteration, whicte of his drawbacks is
that each of its iterations involves policy evaluation thety entail a protracted, iterative
computation. If policy evaluation is done iteratively, theonvergence exactly tg. occurs
only in the limit. The policy evaluation step can be trundate several ways without
losing the convergence guarantees of policy iteration. §pexial case of truncation is
when policy evaluation is stopped after just one backup chestate. This algorithm
is calledvalue iteration and it can be written as a backup operation that combines the

policy improvement and truncated policy evaluation steps:
Vey1(s) = mgx]E [Rit1 4+ yvr(Se1)| S = 5, Ay = a

= m(?XZp(S/, rls,a) [r 4+ yug(s))], (3)

for all s € S. For arbitraryv,, the sequence, can be shown to converge tqQ under
the same conditions that guarantee the existencg.of

Another way of understanding value iteration is by citing Bellman optimality equation,
Vi(s) = mng[RtH + Y0 (S41) |5 = s, Ap = a

— mngp(s’, rls,a)[r + yv.(s")]. 4)

Value iteration is obtained by turning this equation intowpdate rule. Also, note that
the value iteration backup is identical to the policy evétura backup, except that the
former requires that the maximum be taken over all actions.

Further note that value iteration requires an infinite numifeiterations to converge
exactly tov,. In practice, in each of its sweeps, value iteration conbioee sweep of

policy evaluation and one sweep of policy improvement, ared stop once the value

3-4

function changes by only a small amount in a sweep.
An algorithm for value iteration with this kind of terminati condition is depicted in
Algorithm 1.

Algorithm 1 Value iteration
input: Initialize arbitrarily an array)”

output: deterministic policy,r ~ m,, such that

7(s) = argmax Zp(s', rls,a)[r +yV(s)].

repeat
A=0
For each s € S:
v="V(s)

V(s) = max, Zs,ﬂ, p(s',rls,a)lr +~yV(s)]
A = max(A, [v =V (s)])

until A > ¢ (wheree is a small positive number)

Asynchronous Dynamic Programming

A major drawback of the DP methods that we have discussedrgs fhat they require
sweeps over the entire state set of the MDP. For very large s&s, therefore, even a
single sweep may take long time. Indeed, even if we couldoperithe value iteration
backup on a million states per second, it would take over agtiod years to complete
a single sweepAsynchronoudDP algorithms are iterative DP algorithms that are not
organized in terms of systematic sweeps of the state seseTalgorithms back up the
values of states in some order, using whatever values of sths happen to be available.
The values of some states may be backed up several timeshbfowralues of others
are backed up once. To converge, the algorithm must contmiback up the values of

all the states. That is, it cannot ignore any state after soponet in the computation.

3-5

Generalized Policy Iteration
The termgeneralized policy iteratioffGPI) refers to the general idea of letting policy
evaluation and policy improvement processes interact.o&tnall reinforcement learning
methods are well described as GPI, since all have policidsvalue functions such that
the policy is always being improved with respect to the vdiuection and the value
function is always being driven toward the value functiom foe policy. If both the
evaluation process and the improvement process no longerragfe changes, then the
Bellman optimality equation is satisfied, and therefore, vhkie function and policy
must be optimal. In practice, for the long run, the evaluatod improvement processes

in GPI interact to find the optimal value function and an ojgiirpolicy.

[I. MONTE CARLO

Here we consider our first learning methods for estimatingueveunctions and
discovering optimal policies. Unlike above, we do not assucomplete knowledge
of the environment. That is, these methods require only &ameequences of states,
actions, and rewards from actual or simulated interactiah &an environment. Monte
Carlo methods are used to solve the reinforcement learnioigiggn based on averaging
sample returns. We define them only for episodic tasks, thateé assume experience is
divided into episodes and that episodes will eventuallgnieate (no matter what actions
are selected). Only on the completion of an episode are \edtienates and policies
changed. Monte Carlo methods sample and averafyens for each state - action pair

and learn value functions from sample returns with the MDP.

Monte Carlo Prediction
We begin by considering Monte Carlo methods for learning thgesvalue function for
a given policy. Recall that the value of a state is the expeotdarn from that state,
and one way to estimate it from experience is simply to averthg returns observed
after visits to that state. As more returns are observedatieeage should converge to
the expected value. In particular, suppose we wish to estimas), the value of a state

s under policyr, given a set of episodes obtained by followingEach occurrence of

3-6

states in an episode is called wisit to s. Let us call the first times is visited in an
episode thdirst visit to s. Thefirst visit MC method estimates, (s) as the average of the
returns following first visits te, whereas thevery-visitMC method averages the returns
following all visits to s. The algorithm for the First-visit MC is depicted in Algdrin

2.

Algorithm 2 First-visit MC prediction, for estimatingy ~ v,
Initialize:

7 < policy to be evaluated
V « an arbitrary state-value function

Returns(s}- an empty list, for alls € S

repeat
Generate an episode using
For each state € S appearing in the episode:
G+ return following the first occurrence of
Returns(s)- Returns(si+ G
V(s) < averageReturns(s)

until forever

Both first-visit MC and every-visit MC converge te.(s) as the number of visits to
s goes to infinity. Unlike the case in DP, in Monte Carlo methdus éstimate for one

state does not build upon the estimate of any other state.

Monte Carlo Estimation of Action Values
When the model is not available, then it is particularly us&duestimate the state-action
pair values rather thastate values. With a model, state values alone are sufficient to
determine a policy. However, without a model, state valueseaare not sufficient,
and one must explicitly estimate the value of each actiontlier values to be useful

in suggesting a policy. Thus, one of our primary goals for Mo@arlo methods is to

3-7

estimateg.. We want to estimate, (s, a), the expected return when starting in state
taking actiona, and thereafter, following policyr. The first-visit MC method averages
the returns following the first time in each episode that théesvas visited and the action
was selected. These methods converge quadratically, aseb#d the true expected values
as the number of visits to each stateaction pair goes totyfifine only drawback is that
many stateaction pairs may never be visited. Therefore, ee& o estimate the values
of all the actions from each state, not just the state we ntiyréavor. This is the general
problem ofmaintaining explorationOne way to do so is by specifying that the episodes
start in a stateaction pair, and that every pair has a norm@etmbility of being selected
as the start. This guarantees that all stateaction paitsbeilisited in the limit of an
infinite number of episodes. The most common alternativeagmh is to consider only

policies that are stochastic with a nonzero probabilityedésting all actions in each state.

Monte Carlo Control
Here we will consider how Monte Carlo estimation can be useapiroximate optimal
policies. First let us consider a Monte Carlo version of etadsolicy iteration which

is depicted by the following diagram:
E I E I I E
0 = Qug —> T —> Quy —> « oo —> T — (.

We start with an arbitrary policyt,, use policy evaluation%) to evaluatev,, and then
use policy improvement—fé) to find 7r;. This process continues repeatedly unti) stops
improving, i.e.,v(-) the Bellman optimality condition is satisfied. In this sentiave will
assume that the episodes are generated with exploring,st&d we observe an infinite
number of episodes. Under these assumptions, the Monte @etloods will compute
eachgq,, exactly, for arbitraryr;, and the policy improvement theorem assures us that
eachm ;1 is uniformly better thanr, or just as good as;. This in turn assures us that
the overall process converges to the optimal policy andwgdtvalue function. Here, after
each episode, the observed returns are used for policy agi@iy and then the policy

is improved at all the states visited in the episode. A coteps&tgorithm called Monte

Carlo ES, for Monte Carlo with Exploring Starts, is depictedAigorithm 3.

3-8

Algorithm 3 Monte Carlo Exploring Starts, for estimating= .,
Initialize:

Arbitrary Q(s, a)

s < arbitrary policy

Returns(s)- an empty list

repeat
ChooseS, € § and A, € A(S0) so that all pairs have probability 0
Generate an episode starting frafp, A, following 7
For each state, a appearing in the episode:
G+« the return that follows the first occurrence 9fz
Returns(s,a)- Returns(s,ap- G
Q(s,a) + averageReturns(s,d)
For eachs in the episode:
7(s) < argmax, Q(s,a)

until forever

In this algorithm, all the returns for each stateaction paie accumulated and
averaged. One can see that Monte Carlo ES cannot converge wubaptimal policy,
as the value function would eventually converge to the vdiuetion for that policy,

and that, in turn, would cause the policy to change.

Monte Carlo Control without Exploring Starts
Here we want to avoid the unlikely assumption of exploringrtst To do so, we will
introduce two approaches which ensure that the agent salletiie actions. The first
approach is calle@n-policy methods, by which we attempt to evaluate or improve the
policy that is used to make decisions. The second approd#d azf-policy methods,
we use to evaluate or improve a policy different from thatdus® generate the data.

In this section, we will show how an on-policy Monte Carlo aqohtmethod can be

3-9

designed. We assume that the policy is genersdif meaning thatr(a|s) > 0 for all

s € § and alla € A(s). This method usesgreedy policies, meaning that most of the
time they choose an action that has maximal estimated acéilue, but with probability
¢, they select an action at random instead. That is, all n@uyrections are given the
minimal probability of selectionm, and the remaining probability, — ¢ + m, is
given to the greedy action. For amysoft policy, =, any e-greedy policy with respect to

¢~ Is guaranteed to be better than or equat.tdhe complete algorithm is depicted below.

Algorithm 4 On-policy first-visit MC control (fore-soft policies) estimates ~ .,
Initialize (for all s € S,a € A):

Arbitrary Q(s, a)

Tqs <— an arbitrarye-soft policy

Returns(s,a)- empty list

repeat

Generate an episode using policy

For each state, a appearing in the episode:
G« the return that follows the first occurrence ofu
Returns(s,a- Returns(s,ap- G
Q(s,a) « averageReturns(s,g)

For eachs in the episode:
A* « argmax, Q(s,a)

For alla € A:

until forever

3-10

REFERENCES

[1] R. S. Sutton and A. G. Bartdreinforcement learning: An introductipmolume 1. MIT press Cambridge2017.

	Value Iteration
	Monte Carlo
	References

